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Scientific progress and/or accomplishments: Stationary stochastic processes have been
very useful in analyzing time series appear in applications. However in many engineering
application and economic studies there are number of important time series that are not
stationary. Hence several authors have been studied non-stationary processes. Several
classes of non-stationary processes such as

-Harmonizable processes

- Periodically Correlated (PC) processes

- Almost Periodically Correlated (PAC) processes

- Correlation Autoregressive (CAR) processes
have been introduced and studied. The firsi class was first introduced by Cramer and
subsequently studied by several authors. The second and third classes which were first
introduced by E.G. Gladyshev have also been studied by many researchers and have been
applied to appropriate time series analysis. The last class mentioned which 1s much richer
than the classes of PC and APC processes, was first introduced and studied by J.C.
Hardin and this author. An example of this newly introduced CAR processes which s
neither PC nor APC is the helicopter noise. Helicopter noise which we hear is the
combination of two PC processes generated by the main And rear rotors. Itis clear that the
sum of two PC processes is not necessarily PC. This 1dea has becn later used by some
authors to further study the helicopter noise data.

In this project we have been studying the non-stationary processes in general and -
the PC, APC, and CAR processes in particular obtairiing several results which either have
been published or submitted for publication in refereed journals . We intend to continue our
study in these directions.

The following papers, where the support of this grant has been acknowledged ,
have been published or accepted for publication in referced professional journals. Repx int
and/or preprint of these works has been sent to vou on an ongoing manner with interim
reports.

A. Makagon, C.A. Mensha and A.G. Miamee; A Levinson-type Algorithm for Discrete
Stationary Random Fields, SIAM J. Math. Anal. 28 (1997) 897-902

A. Makagon and A.G. Miamee; On the Spectrum of Correlation Autoregressive
Sequences, Stochastic Processes and their Applications 69 (1997) 179-193

A. Makagon, A.G. Miamee and B.S.W. Schroeder; Recursive Conditions for
Positively of the Angle for Multivariate Stauonary Sequences, The Proc. Amer. Math.
Soc. 126 (1998) 1821-1825

R. Cheng, A.G. Miamee and M. Pourahmadi; Regularity and Minimality of Infinite
Variance Processes, J. Theoret. Probability ( to appear)

R. Cheng, A.G. Miamee and M. Pourahmadi; Some External Problems in L°(n), Proc.
Amer. Math. Soc. ( to appear)
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During the latter periods of the grant the following papers, where the support of this
grant is acknowledged, have been completed and submitted for publication. copies of
preprints of these are enclosed with this report.

On AR(1) model with periodic and almost periodic coefficients ( with H. Hurd and A.
Makagon

The geometry of LP(u) and growth of moving average coefficients of infinite variance
processes ( with R. Cheng and M. Pourahmadi)

On Generators of two-parameter semi-groups of operators ( with A. Niknam)

On the shift operator for non-stationary processes (with. G.H. Shahkar)

Scientific Personnel: A total of 6 persons have received various types and different levels

of support from the funds provided by this grant :
a) Principal Investigator

b) Two research associates

3) Three graduate student.




The Geometry of L?(1) and Growth of Moving

Average Coefficients of Infinite Variance Processes

R. Cheng, A.G. Miamee and M. Pourahmadi

Abstract: While the notions of covariance and spectrum are not defined for infinite variance
processes, the autoregressive (AR) and moving average (MA) parameters are well defined
and it is tempting to characterize prediction-theoretic properties of such processes in terms
of these parameters. Attempts are made to determine growth rates for the MA parameters.

Some geometric properties of L” spaces are studied which sheds light on this problem.

1 Introduction

A discrete-time process {X;} with X;eL?(Q2, F,P) is said to be p-stationary if for all

n

integers n > 1, ty,---,,, h and scalars c1,- -+, &, B| D cx XyynlP = E| Zn: cr Xy, |P-

Its innovation process {¢;} is defined by €, = X; —k:PlHHXt where P;::Xt stands for the
metric projection of X, onto H;_; = 3p{X;_1, Xi—2, -} in the norm of L?(Q2, F,P). Note
that 2-stationary processes as defined above are, indeed, the familiar second-order stationary
processes. For 1 < p < 2, p-stationary processes have no well-defined notions of covariance
and spectrum, so that neither the spectral-domain nor the time-domain techniques are as
effective as they have been for 2-stationary processes. Recent developments in the prediction
theory of stable processes (Cambanis and Soltani, 1984; Cambanis, Hardin and Weron, 1988;
Cheng et al., 1998, 2000; Miamee and Pourahmadi, 1988a,b; Makagan and Mandrekar, 1990;
Rajput and Sundberg, 1994) have revealed that the two classes of harmonizable and moving
average stable processes are disjoint. Cambanis et al. (1988) have discussed additional

intriguing prediction-theoretic behavior of discrete time stable processes, unsuspected from

the Gaussian or second-order processes.




It is known (Miamee and Pourahmadi, 1988a) that any nondeterministic p-stationary

process can be written as

n n
Xt = €+ Z (lkXt_k + Et,n =€ + Z kat_k + ‘/t,m (11)
k=1 k=1

for any n > 1, where {ax} and {b;} are unique sequences of scalars called the autoregressive
(AR) and moving average (MA) parameters of {X;}, and Vin, EyneH;—n—1. The second
representation in (1.1) is called a finite Wold decomposition of {X,;}. If the success of
characterization of regularity of 2-stationary processes is any clue, then the norm-convergence

n
of z br€:—x as m — 00, should play a role in the study of regularity of p-stationary processes

k=1
(Cheng et al., 2000). This question of convergence is, in turn, related to the growth of the
MA coefficients {bx}. Miamee and Pourahmadi (1988a) have shown that by = O(2F). An
improved bound is obtained in the present work for the p-stationary case, using geometric

properties specific to LP(u) spaces. Some of the many open problems in this unyielding area

of prediction theory are pointed out and appropriate analogues and references are given.

2 The Geometry of LP(u) and its Applications

The notion of James orthogonality in a normed linear space is central to this section. Let z
and y be elements of a Banach space X. We write z Ly y if ||z + ay|| > ||z[| for all scalars
a. Note that the relation 1y is generally not symmetric or linear.

A Banach space X is said to be uniformly convez if for any € € (0, 2] there exists a . > 0

such that the conditions ||z|| <1, |ly|| £ 1, and ||z — y|| > € together imply that
sz +yll <1-6.
Here is a useful criterion for uniform convexity.

Proposition 2.1 A Banach space X is uniformly convez if and only if the conditions ||z,|| <

1
1, lynll <1 and Jim ”5(% +yn)|| = 1 together imply that lim |z, — Yol = 0.
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It is known that for 1 < p < oo, the spaces LP(u) are uniformly convex. For the above
material, and additional information on Banach spaces see Kothe (1969, p. 353).

Suppose that M is a subspace of a Banach space X. For z € X consider the problvem of
minimizing ||z — y|| over y € M. When X is uniformly convex, then the extremal vector y is
uniquely determined by = and M. In that situation the metric projection mapping y = Pyz
is characterized by

z—- Py 1L M (2.1)

If P, is a metric projection mapping, then

| Przl| < 2[|]] (2.2)

for all z € X. This is because

|Pyzl| = ||Puz—+ 2z
< |lz — Pus|l + [lzl]
< ||z — Pyz + Pzl + ||z|

= 2|zl

We shall see that this bound, derived from general norm properties, can be sharpened when

X = LP(u). Furthermore, from (1.1) and repeated application of (2.2) it follows that

[ Xoll

ol (23)

b <27 -

for all m. This bound will also be sharpened when using properties special to LP(u) spaces.

Uniform convexity interacts with metric projection in the following way.

Lemma 2.2 Suppose that the Banach space X is uniformly convez, M is a subspace of X,

and zLxM. If ym € M, and lim ||z + yn|| = ||z}, then lim ||ly,|| = 0.




Proof. The assertion is trivial if z = 0. Otherwise, put X,, = z/||z + yn| and Y, =

| (z + Ym)/||T + yml|- Note that || Xn|| < 1, since zLxym, and ||Yy,|| = 1. Furthermore,

lzll o llz+ SUml|
Iz +ymll = lz+ymll
= ”%(Xm + Ym)“ <1l

By assumption, lim ||z||/||z + ym|| = 1, which then forces lim [|5(Xm + Yn)|| = 1. Now

Proposition 2.1 gives

1l

2]l im({lym ] /[ ]})
= [zl im(lyml/llz + ymll)

= |l[lim(||Xm — Ymll) = 0. O

lim ||/ |

It is known that the metric projection onto a subspace is norm continuous in a strictly

convex, locally compact Banach space (K6the, p. 344.). Here is the result for a uniformly

convex space.

Propositibn 2.3 Let M be a subspace of a uniformly convex Banach space X. If x € &,

Tm € X, and lim||z,, — z|| = 0, then lim ||Pyz,n — Pyz|| = 0.

Proof. Observe that

le — Puzll < |l& = Putm|l

< Nz = zmll + |l2m — Prtml|

< o —zmll + llom — Pruc|

< Mz = zmll + llzm — 2|l + lz — Pzl

= 2le — zmll + llz — Puzl|
It follows that lim ||z — Pyam| = ||z — Pyz|. Applying Lemma (2.2), and using the
orthogonality condition (z — Pyz)Lx M, we get lim || Pyrzm — Pyzl| =0. O

4




Let X be the best predictor of X, based on the infinite past
{..., X g, X 2, X 1},
and X (m) be the best predictor of X, based on the finite past of length m,
{X myeoy Xog, X0, X1}

Theorem 2.4 If {X;}_, is a p-stationary process, then the finite predictors X (m) of Xo

converge in norm to its infinite predictor X.
Proof. Let {Y;,}5o___, be a sequence such that
Y € sp{X_m,. ..,X_3,X_2,X_1}
and lim ||Y;, — X|| = 0; such a sequence exists since
Xesp{...,X_3,X 5, X 1}.
With the above definitions we have

1Xo - XI < 1%~ X(m)l

IA

1 X0 — Y|

< 1 Xo = X+ 1X ~ Yol

From this we see that

lim || Xo — X (m)|| = | Xo — X||-
Applying Lemma 2.2, we get

lim{| X (m) — X||=0. O

The following inequalities constitute a parallelogram law for LP(u).

5




Proposition 2.5 If 2 < p < oo, then for any f and g in LP(u)

2(1F1P + llgl”) < II(F+)IP+1I(f =9I (2.4)

< 27HIFIP + Hlgl)- (2.5)
If 1< p<2, then for any f and g in LP(u)

AP+ llal?) < N+ IP+1I(F = 9P (2:6)

< 2(1/11P + llgllP)- (2.7)

Equality holds in (2.4) and (2.7), if and only if fg =0 a.e.; equality holds in (2.5) and (2.6)

if and only +f f =+g a.e.

Proof. First, consider the case p > 2. For any complex numbers a and b, the usual parallel-
ogram law gives

la+bf* +]a — b* = 2(|af* + [o). (@)
When p > 2, we have || - ||z < || - |liz, and so

(Ja+ b7 +la ~bP)? < (la+b]> + |a - b)'/? @)
= 22(jof? + )

Apply Hoélder’s inequality, using

1 1

2t o2

to get
la]?2+ b2 < (|a|2(p/2) + |b|2(p/2))2/p 1+ 1)(p—2)/p
= (|a|p + [bP)%? - 2-2/P, (3)

Combining this with (2), we find that

(la+ b +]a— b!p)l/p < 2(p—1)/p(|a|p + lblp)l/p-




For any f and g in LP(u), we apply the above estimate to a = f(w) and b = g(w), and

integrate to get
I1F +gllP +11F = glP <227 (IfIP + llgll”) (2 <p < o0). (4)

The above argument appears in Kothe (1969, p. 355), in connection with the proof of uniform

convexity of LP ().
For the case 1 < p < 2, let r = 4/p (so that 2 < r < 4) and apply (3) with the parameter

/2, yielding
o> + 181 < (lal” + |B]7)*7 - 20277, (5)

Taking |o|? = |ulP and |B]2 = |v]P, we get
lo|" = |a|2(r/2)|u!p(r/2) = Iulp@/p) = |ul?,
and likewise |B]" = |v|?>. Hence (4) becomes
[ul + fofP < 2'7FD - (Jul® + Jo]?)72.

This is certainly true when u = a+b and v = a—b, where a and b are any complex numbers:

la + b[” +la—bP <27CD . (Ja+ b + |a — b*)P/2. (6)
For 1 < p <2, we have || - ||;» > || - |l;>- Applying this fact, along with (4) and (5), brings us
to ’

G+ b +]a—bP < 20D (ja+ b+ |a— b2
9l—(p/2) . (2]a|2 + 2|b|2)p/2
< 2 (jaP + o)

As before, for any f and g in LP(u), we apply this estimate to a = f(w) and b = g(w), and

integrate to get

I1f =+ gll” +11f — all” < 201 F17 + HlglP)

7




The conditions for equality in (2.5)—(2.8) can be traced to the conditions for equality
in Holder’s inequality, and the condition || - |j» = || - |l;z, as these are used in the above

arguments.

Note that as p tends to 2 in either direction the Hilbert space case results; the inequalities

are sharp in this limited sense.

From the parallelogram law, we get a Pythagorean theorem for IP(u). Again, there are

two cases.
Proposition 2.6 Suppose that X 1,Y and define
A= (2p_1 — 1)—1/77.

If 2 <p< o0, then
| X7+ N YIP < |IX + Y. (2.8)

If 1<p<2, then
X + Y|P < [IX|P + 2P| Y|P. (2.9)

Proof. We apply (2.4) in the form
l3¢7 + o + 3£ = 9| < 33117 + gl?)- (1)
Now taking f =X and g = X +Y in (1) we get
IX + 3YIP+3YIP < gllXIP + ZI1X + Y17,
Apply (1) repeatedly, taking f = X and g = X + (1/2")Y,n=1,2,3,..., N, will result in
2V(|IX + (1/2V Y|P+ 2| (1/2Y DY P 4 -+ 2Y|(1/ 2T Y + 20 (1/27 Y|P

1
< @V 42t 2027 |IX)P + §||X+Y||P.

Simplifying, taking N to infinity, and using || X + (1/2V)Y|| > || X||, we finally get

X117 + IY]P < [|1X + Y. (2)

=11




Note that the condition X 1,Y implies that the quantity || X + Y| is critical when o = 0.
It follows that |
lim 2V(||X + (1/2")Y]P - | X|IP) =0,

N—o0

and the estimate leading to (2.8) is asymptotically sharp. '
In the case 1 < p < 2, we turn to (2.7), with f = X and g = X + Y. This yields

HIXIP + 31X +Y P < IX + 3V 1P + Y 1P (3)

Now repeat this argument with f = X and g = X + (1/2")Y, n=1,2,3,..., N. The result

is

@Y = DIX|P+ IX + Y|P < 2VIX + (1/2Y)Y]P + Y]

2r-1 -1
Rearranging, we find that |

X + Y|P < [IX]P + IYIP + 2N (X + (1/20)Y 1P - [1X])-

-1 _1

As N tends to infinity, the last term vanishes, because X 1,Y. U

Note that equation (2.9) can be sharper than the triangle inequality.

The constant A = (2°~1 — 1)~'/? appearing in (2.8) and (2.9) might not be optimal, since
the estimates in the proof are generally not sharp. One might wonder whether the value
) =1 is always possible. The following example shows that it is not.

Let X = [3({1,2}), and consider f = (1/4,1) and g = (—1,1/16) in X'. Then f1lsg, and

IfIP = 65/64
llgll? = 4097/4096
If +gl> = 6641/4096.

In order that || f||> + X3||g|]* < ||f + glI®, it is necessary that A® < 2481/4097.
The Pythagorean inequalities give rise to improved bounds on the coefficient growth in

the finite Wold decomposition (1.1). As before, we write A = (2P~! —1)7/7.

9




Theorem 2.7 Suppose that {X;}2_., is a p-stationary process with nontrivial innovation

process {&,}2 ., and finite Wold decomposition (1.2). If 2 < p < oo, then
[1(1, Aby, A%ba, .. )lie < [ Xoll/l€ol-
Proof. By applying (2.8) repeatedly to the finite Wold decomposition (1.1), we get the bound
lleoll? + [AbrPllenli? + - - + XN ow Pllen|” + AN[[VonlP < [ Xoll”

for all N. Now drop the nonnegative term AV||V, n||?, and let N increase without bound.

O

Observe that this improves on the bound (2.2). The case 1 < p < 2 is more delicate, since

the estimate (2.9) is not similarly useful. However, the following can be said.

Propositipn 2.8 Let1 < p < 2, and suppose that X LY. If k is a constant satisfying
0< k< (27— 1),

then for any positive integer N satisfying

N <

1, [s@ -1 -1
p _ 1 g2 217—1 _ 2 ?

we have

RIX|P+ (1= 27N)Y]P < IX + Y|P, (2.10)
Proof. We start with (2.7), using f = X and g = X +Y to get
P + BYIP+ 203 P < X+ YIP 4 X
Repeat this estimate using f = X and g = X + (1/2")Y, 1 < n < N, with the result

B 11 1
20DV X + (1/2M)Y [P + (5 ot 5;) Y|P

< X 4YP+Q+207 4 4 207 DND) X P

10




[Unfortunately, the right side generally grows more rapidly than the left, so the argument

from the 2 < p < oo case is less fruitful.] Rearranging, and using X 1,Y, we deduce that

-y _ 207N -1

2 2p-1_ ]

] X7+ (1= 2P < X + Y.

The constant enclosed in the square brackets is at most the value (27~! —1). For  satisfying

0< k< (271 —1), we have

9lp-1N _ 1
p-1)N _ 2 =
k< [2 T }
whenever
1 /-;(2”‘1 -1 -1
ng_llogz[ Y- .0

The values k = (2P~ — 1) and N = 1 can always be used, corresponding to the crude bound
(27 = DIXIP + 3P < [1IX + VP (2.11)
The coefficient growth estimate that results from (2.10) is the following.

Corollary 2.9 Suppose that {X;}2_. is a p-stationary process with nontrivial innovation

process {€;}2 .., and finite Wold decomposition (1.2). If 1 < p < 2, then with the notation

of Proposition 2.8,
1+ (1= 27" b + (1 =272 [boP + -+ < || X/ £leoll”-

When p is close to 2 (greater than about 1.695), then N is greater than 1, and this is a

sharper bound on the coefficient growth than (2.3).

These Pythagorean inequalities also give improved bounds on the norm of the metric

projection, compared with the crude result (2.2).

11




Corollary 2.10 Let M be a subspace of LP(u). If 2 < p < oo, then
I1PafIF < (2271 = DYPI£]L

If 1 <p<2, then
1P fll < @ —27N)712) £l

where N 1is any positive integer satisfying

1 1
N< =7 log [2_2,,_1]-

Again, note that when 1 < p < 2 we can always choose N = 1, which gives

1P sl < 2771151

still an improvement over (2.2). Furthermore, Corollary 2.10 is sharp in the sense that as
p tends to 2 in either direction, we get ||Pasf|| < || fl|, which is the correct statement when
p=2.

These bounds are generally not sharp. In fact, one might wonder whether ||Pyz|| can
actually exceed ||z||. The following example shows that it can. Here, let X = [P({1,2}) with
p=1.1. Consider f = (2,1) and g = (—2,27). Then f1,g. Take z = f +g and M = sp{g}.

Clearly, Pyyx = g. We now compute
lz]|Pf = (1+2°P)P~3.52...
|Pyz|| = 2°+2%") ~4.45....
For information on the norm of metric projections, see Mazzone and Cuenya (1995).
Acknowledgement: The work of the second author was supported by US Army Research

Office grant (DAAH-04-96-1-0027) and the ONR grant (N00014-89-J-1824) and third author
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Moreover exponential representations for such a semi-group is obtained. These results will
extend some well-known results from the theory of one-parameter semi-groups.
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1. INTRODUCTION. Let ybe a Banach space and B(y) the space of all bounded linear
operators on . A function

t-> U

?

fromR * into B(Y) is called a one-parameter semi-group of operators if

U, =UU,YtseR".

t+s

A semi-group U, is called continuous if for every x in ¥, the function

- U (x)

is continuous at any # € R*. The infinitesimal generator H of U, is defined by

. U -x
Hx) = lim ————
-0 T

for those x’s for which this limit exists.

Domain of H is not in general, however it is well-known that this domain is dense in ¥ .
It is even known that the set of analytic elements of U, , namely the set

% =N DH")
is dense in y. Using these facts several exponential representation of U,in the form

U =e™; teR”

are developed. In this note our purpose is to obtain similar results for the two-parameter semi-
groups. By a two-parameter semi-group of operator on we mean a function

(t’ S) - Vr/t,s

from R; = R* x R" - {(0,0)} into B(x) such that
W, W, W,

t,s t+t'5+s'

1 |:
,S

for every (t, S), (t' ,s') € R, . Such a two-parameter semi-group ¥, ; will be called continuous
if for each x in y the function
(ts) ~ W,,(x)

is continuous at any point (to ,So) €R, .
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To any two-parameter semi-group of operators Wt’s we associate two one-parameter semi-groups

U=W,andV,=W,, ,teR"
If W, _ is continuous so are U, and V. Throughout the rest of this note we assume all semi-
groups are continuous, unless otherwise specified. The infinitesimal generators of U, and V, are
denoted by H and K, respectively. We will think of the pair (H, K) as the generator of WI’S and

prove (in Section 2) that its domain, namely D(H)ND(K) is dense in y . We will prove that the
set of analytic elements of (H, K), namely

N D" N DiK")

nmeN

is dense . Section 3 is devoted to expressing /¥, in exponential form

Ws _ eitH+isk’(t’S) c Rg

[#

Two parameter semi-groups of operators arise naturally in several areas of applied mathematics
including prediction theory of random fields [ 3,4 ]. Such semi-group of operators can be also
used to describe evolution of physical systems in quantum field theory and statistical mechanics
[5-7,9-11].

2. Infinitesimal Generator. In this section, for the sake of completeness, we give a few lemmas
stating basic properties of the one parameter semi-groups of operators and their generators.

2.1 Lemma. Let U, be a semi-group of operators on . Forany x iny and any 0<a<f denote
X, 5 by

p
Xup = f U (x)dt

then limnx | = Us(x),for allse R".

n—r© §,5+—
n

Proof. For any integer n we can write
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1

s+_ 5+_

L f (U - Ui < [ UGx) - Ux)lde.

Given any € > 0 there existsd > 0 such that

U - UM < g-, whenever 1t - 5| <0.

Let N, be any integer greater than % Then for any n> N, we have

§ +—

n [1UG) - Uflde

IN

Inx 1~ U

A
S

—
| ™
Q
o~
IA

2.2 Lemma. For any semi-group U, on a Banach spacey and

t>0 (X)

(a.) X Is a linear space

(b)) X, contains all the x_ ,'s with xey, 0 < a < p.

Proof, (a) is clear because U r(x)’s are nested linear spaces.
(b) For anyx, , we can write
B B
Xup = f Ux)dt = f U% Ut_%(x)dt
o o

p-<
p 2
= Ug f U _a(x)dt| = Us f U (x)dt
2 7 2

2
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R

2\ 277 2

2 353

N

So X, pEXo-

2.3 Lemma. With the notation above, we have

i
2

splxgrxen,0<a<p)

Proof. By Lemma 2.2 we have

sp{xa’ﬂ:x e y,0<ac< /)’}g Zo-

Now take any y in X, Then y = U(x) for some s> 0 and some x € ¥.
By Lemma 2.1

ST Ufx) =y as n—ee.
n

This shows that splx, : x€x, 0 < & < B} is dense in ,,, which in turn implies that
sple,g @ x€y, 0 < a0 < B} = %o
We can prove more, namely:

2.4 Lemma. With the notation as in lemma 2.3 we have Eﬁ{xa’ﬁ cxex, 0 <o <P} = X—o-

Proof. Itis clear that (by Lemma 2.3)
sple, g x€Xg 0 <o < B c Xo-
Now let yey, then y = U(x) for some xey, and some s > 0. We can write y as

y = U(x) = UsUs(x) = Us(z), where z = Us(x) € ¥, By Lemma 2.1 we can see that
2 2 2 2
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nz 1~ Us@@) =y

n 2

+

N |

3
2

So we found a sequence in
sple, g @ x€xp 0 < @ < Bl,

namely nz which converges to y. This means

+

>

1
n

[
e

Ho=spl, g+ X€Xp,0 < o < Pl
and hence
sple, g @ X€x,0 < a0 < B} = Xo
2.5 Lemma. Let U, be a semi-group of operator on x. Then for any x in y,
IimU(x) = x,
t-0+

Proof. Let x be an element in ¥, then x = U (z) for some s> 0 and some zey.

We can then write

lim U = lim U, (U,@) = lim U, , ()
-0+ -0+ -0+
= lim U,(z) = Uf2) = x.
A-s+

We can improve the last result as follows.
2.6 Lemma. Let U, be a semi-group of operators on . Then
lim U, (x) = x, for any x € ;(—0

-0

if and only if ~|U, | 5(_0" is bounded in a neighborhood of zero.

Proof. Suppose there exists M > 0 such that U, l 5(*0 | < M in aneighborhood, say (0, a), of
zero. Let x be an element of y,. Given € > 0 there exists y in X, such that

-x| < .
(% [ Mo
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By Lemma 2.5

lim U, (y) =y

-0+

Hence there exists 8, with 0 < & < ¢, such that
U, @) -yl < -;-, whenever |t| < 8.
now for any t with |#| < & we can write
1U, ) - xl<l U, &) - U, Ol + 11U, @) -yl + 1y -l
€

y“<(M+l) (M 1)+2<e

Conversely suppose

lim U, (x) = x, for each xe}c_o.
=0+

If we define U, = I, the identity operator, then for each x in %, U(x) is continuous on [0,1].

So U, (x)| is continuous and hence bounded on [0, 1] foreach Xxiny. Applying the
umform boundedness principat [8] to the class {U, : 0< 1t < 1} of operators on,, we conclude
that{j U | x,l} is bounded on [0, 1].

Using the previous Lemma we can prove:

2.7 Corollary. The set {x: ,11)1(;[} Uz(x) = X} Isclosed if and only if |U, | x,! is bounded in a

neighborhood of zero.

2.8 Lemma. We have
p p
{ f U(x)dt = xey,t = { f U, (x)dt : xex}

It is clear that the left set is a subset of the right one. To prove the other way let y be in the right
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B
hand side. i.e.lety = f U(x)dt for some xey, and some 0<a<P. Then we can write

o

) p
y=[ U, @ = [ U,"%( U%(x))dt‘

b
= f U_o (2) dt, when z = Us (X)€%,
2

2

SO 'fﬁ—ﬁ
2

p o
y = f U_o (2)dt = f Ufz)dz € L.HS.
o E o
2
The following Lemma explains why we are interested in Xy pis

2.9. Lemma. For any xey and any0<a<p the vector x, ¢ is in the domain of H and

H(x,,)=U,(x)- U,(x)

Proof. Take any vector x, g, X€X, 0 < a < B. Then we write

U, ) - x 1P p
lim —eF Teb —gim [ U, ()dt - [ Ux)de
im - im [ D) f @)
1 s p
= lslfgl . f Ufx)dt - f U, (x)dt
B+s a+s
- lim L[ U@ar - lim L [ U = Uye) - U,
s-0 8 i s-0 8 "

Hence  x,, € D(H) and H(xaﬁ) = Uﬁ(x) - Ua(x).
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From Lemmas 2.3 and 2.9 we can immediately get the following proposition.

2.10 Proposition. The domain of the infinitesimal generator H of a semi-group U, of operators
ony is dense in ¥,

Now we study two parameter semi-groups of operators. Let W,  be a continuous two-parameter
semi-group of operators ony and consider its-two one-parameter semi-groups U, and V, of
operators on 'y, as defined before. Suppose H and K are the infinitesimal generators of H and K,
respectively. The following two propositions deals with the domain of infinitesimal generator of
W, namely D(H)ND(K). These results show that H+K has a rich domain.

4

2.11 Proposition. Let W, be a two-parameter semi-group of operators on ). Then

B B
B = spl f Uxdt : 0 < a < B, xeD(K)} and R = f V(x)dt : 0<a<BxeD(H)}

are a subset of D(HY\D(K). Thatis % U fc D(H)n D(K).

Proof. We just show f C D(H ) V] D(K). The other one is similar.
From Lemma 2.9 it is clear that

f < D(H).

So it remains to show that

B c D(K).
To see this, pick any x in D(K) then for its corresponding x, p We can write

1 |
lim — (V (xa,g> - xa’B> = lim — f (V Ulx) - U, (x))dt =

t
50 S : =0 5 §

V(x)-x
lim ( s( ) ]dt
5-0 S

The last equality follows from the fact that (cf. [2] ) {|U,|, < t < B] is bounded for any fixed
o, p with 0 < @ < B, and the limit in last expression exists, since x € D(K).

B
lim{ U

4

_ B
) x)dt = f U

I
s-0 S
o
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B

So the x, , belongs to D(K) and K(xaﬁ) = U, (K(x))dt.

From the proof of the previous proposition we can get the following corollary

2.12 Corollary. With the above notation and forO < & < f we have

Q) K( JﬁUt(x)df) = jjU, (K(x))dt,x e D(K),

Q

(i) H( [’ (x)dt) = ["(H(x))dt,x e DB,

(iii) H(fU,(x)dt) = fU, (H(x))dt,x e D(H),
i) K( [ V,(x)dz): [V (K(x))de,x « D(K).

2.13 Proposition. Let W, be a two-parameter semi-group of operators on . With the notation
above we have

BB
a) C ={ f f W, (x)dids xex} < DUEDND(K)

b) Cis dense in ¥,,= U( Wt,s(x) and hence K,o = C.

t,s)eRy
BB
Proof. (a) Let yeC then y = f f W, (x)dtds for some x in and some 0 < & < . We can
write oo

hm

f f W, (x)dds

BB
- ([, (x)ded
s

-0+ T

- lim + [ f U, Vx) - UV )drds

lim — f (U0 - U (x))dt |ds

=0+

B
J .
o
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V (Uﬁ(x) - Ua(x))ds ,

S

Q\'@

by lemma 2.9 and the boundedness of {”Vt “ D =<t<§ } [2].

This shows that CcD(H). Similarly one can show that CcD(X).

(b) Let xey,,. ie. x = W, y, forsomey iny and some (z,s) € R(f. Given any€ > 0 there
exists a 0 > 0 such that

It -t/ <8 and |s - s'| <= W, @) - W, Ol <§

Let N, = [%} + 1, then for any n> N, we have

1 1

S+— (+—
n

||n2f th,’s(y)dt/ds’ - x| =

s

s+.!_ t+_1_

in? f f (W ) = W, (o)dt'ds'|<
s t
sk 1

n? f f W, Ay) ~W, 3)ldt'ds’ <

S

1

s+i +—

nzfn f%dt’ds/s§<e.

The following lemma which is of independent interest can be used to shorten the proof of part (b)
in last proposition.

2.14 Lemma. Let# be a two-parameter semi-group of operators on . With the notation
above, we have

(a) Forany xin ¥,
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Wt’s(x) - x, as (t,5) = (0,0).

(b) In order that( l)ir(n0 W, (x) =x forall x'sin g, , itis necessary and sufficient that
1,5)-(0,0)

(I, | %l be bounded ina neighborhood of (0,0).
Proof. Proof is similar to the proofs of Lemmas 2.5 and 2.6
By proposition 2.13 The domain of H + K and (H, K), which is D(H)\D(K), is dense in X—o—()'
We now want to show that (H, K) serves as a generator for W,,, and it possess a dense subspace

of analytic elements.

We start with proving the following lemma which will be needed in sequal.

2.15 Lemma. Iffisa C” (O, oo) function with compact support for 72 0, then

Ii =f +D(¢), unifo:mly int.

_ fOe+0) -0
oot r

Proof. Given € > O there exists ¢ > 0 ,such that

I f "(s)- f ’(t)’ <e, whenever |s- t| < &. Using the mean value theorem we can write

{f(t”:_f(t)—f'(t)

=|f1(s) - £1(2)

where £ < s< £+ 7. Nowif 7| < & thenls- t| < & and hence

|f(t+7) - Q)

| r

~ @)=l - 1@l <e

which completes the proof.

2.16 Theorem. Let W, = be a two parameter semi-group of operators on y and
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U,,V,,Hand K asbefore. Let 3 denote the set of all C” (O,w) functions

with compact support. Then the set

??f x)dids,x € y,f,g€3
00

has the following properties

(a) gis a subset of D{(H)n D(K).
(b) g consists of analytic elements of (H,K).

(c) gisdensein y .

Proof. (a) Let y € g.then

yzoj?f x)dtds
00

for some x € y and some f, g € 3. For sufficiently small 7 ’s we can write

= TTf(t)g(s) (x )dtds — _Hf g(s)W (x)dtds

., (s - [ [ £ I, (<)

— 8 ot-—,8
Ot § O e, 8

Flt—7)gls)W, (x)dtds - oﬁf(t W, (x)dtds

(- o) 20N el (<.

So we can write
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We claim this limit exists and is equal to

—ﬁf’(r)g(s)ﬂc,s(x)drds.

Since fand g are in I there exists @,/ with 0< @ < f such that f and g are zero outside

[a /] ] . Since ”g(s)W;S(x)“ is continuous on [a, ,B] X [a, ﬂ] it in bounded there. i.e.

there exists some M > 0 such that

Hg(s)W;’S(x)us M, forallt,r e [a,ﬂ].

a
Given €> 0, by Lemma 2.15, there exists a positive ¢ < 5 such that

fle-2)- £ :
rl<d= == fi)< 2MF
For |r|< & we can write
ij(t - T: -/ g(S)W;’S(X)dtdS-i— qj‘ojf'(t)g (x)dtds
(L2 LO ) et (e
AT o) et (ol
i M e 2 €
< I 2M,6’ j(M)dzds— > 25 (p-a) < 5
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This proves our claim that y is in D (H) and
[ [ r@els)w, (x)dds.
00

Similarly one can show that y is in D(K) and -

K0)- |

~f (t)g (s)d W, (x)dds.

ou.__,s

(b) similar to part (a) one can show that y = j I f (t)g(s) Wt’s(x)dl‘ds is in
00

D(H"K"), for every m, n>0.
Furthermore, we have
(H"K")(v)=(~ ’”oﬁ )" ()W, (v)drds
00
So any element in g is an analytic element.

miyh
Note that the analytic elements of W, are those in ﬂ 50 D( H K )
’ mm>

(c) suppose x* is a bounded linear functional on y which vanished on g . i.e. suppose

x*(TTf(l‘)g(S)VK,S(X)dtdSJ -0

for every x in y andevery f,g e 3. We can therefore write

0 o0

[ [£0gs) (1, (0 s = o,

00
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for every f,g €S and every x in y. This, we claim, implies

X (7,

(x)) =0, forall x e,{,(t,s) ER,,

. * .
which means x  vanisheson %, o

This, in virtue of the Hahn-Banach Theorem [8] shows that g is dense in m . So to complete

the proof we need to check our claim above that

x (W,

(x)) =0, forall x ez,(t,s) eR’

Suppose on the contrary

x*(W,M (xo)) # 0,

for some x, € 7 and some (to,so) € R;. WLOG we can assume that the real part of
x*(VKO ‘5 (xo)) is positive, i.e.
Rex’ (w,o,s‘) (x)) >0

Since y* (I’V;s ( X, )) and hence Re (x*(W,,s<xo))) is continuous in (t, s), there exists a

neighborhood(a ,ﬂ) X (}/ ,5) of(to,so) Such that

Re(W;’s(;gO)) > O,V(t,s) € (a,ﬂ) X (7,5).

Now take any two nonzero functions fand g in J . By a linear change of variable we can find

two other such functions, we call them f and g again, which are zero out side (a /] ) and ( 7,0 ) ,
respectively. Squaring these functions if necessary, we can further assume that f and g are

positive throughout (a ) ) and ( 7,0 ), respectively. For these functions f and g we have

o 5o
[ [r@)els)m, (x,)deds = [ | f(0)g(s)W, ,(x, )deds > 0
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which is a contradiction.

3. EXPONENTIAL REPRESENTATION.. In this section we would extend the one-parameter

semi-group results concerning their exponential representation. Let ¥,  be a two-parameter

semi-group of operators on y with U, and ¥, being its associated one-parameter semi-groups

as defined before. For each 7 > 0 we define two bounded operators as follows

The infinitesimal generators H and K of U, and V, , namely

H(x) = lir%Ht(x) and K(x) = 1'11r3KT(x)

are densely defined. For any bounded operator A, the operator e’ is defined by

o Ak
=Y 2

k=0

It is clear that the series on the right hand side is absolutely convergent and one has
) .

If the operator A is not bounded k and / or not everywhere defined then by e? we would mean
the operator defined by

which is defined on those x in M D(A") for which the series is summable.

n20
There are several exponential representations for a one-parameter semi-group of operator

(cf. [1,2]).

Here is one which we want to extend to the two-parameter case.
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3.1 Theorem. Let U,z € R* be any one-parameter semi-group of operator on y with

Ur(x)— x
Hr(x) = ——T—— . Forevery x € y we have

U (x)= lim(e"”’ )(x),
70+
where the convergence is uniform with respect to t in compact sets.

3.2 Theorem (Exponential representation) Let W;,S be a two-parameter semi-group of operators

on the Banach space y and let U,,V,,H_ and K, be as before. Then

W . lim eitHz+ius

1,5 >0
where convergence is in the strong sense and uniformly on compact sets.

Proof. Letx be a fixed vectorin y and C be a compact subset of R*. By Theorem 3.1

(e”H’ )(x) - U,(x)

As 7 — 0, uniformly for all tin C. So there exists a d; > 0 such that
teCand 0<7< 0, > le”Hf(x)— Ut(x)“< 1

= le”H’(x)”S “U,(x)”+ 1

on the other hand by [8] there exist M >0 such that
|, < Mand|p,(x)|< M

forall e C. Thus te C and 0< 7 < 9, = lei'H'(x)lls M+1

Applying uniform boundedness principal to the class

itH }
{e tec,0<7<6
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we conclude that there exists some L>0 such that
e[ < £
forall t e C and 7 € (0,51).

Let x € 7 and C a compact subset of R™ be fixed. Givene > 0 ,applying Theorem 3.1 to
U, and V, there exists positive number 4, and ; such that

. €
teCand 0<7<6,= Ie’HT(x)— U (x)j< YY;
seCand 0<7< 4, = le””’(x)— U (x)|< -2%

Letting § =min{J,,d,,0; }, forany?,s € Cand 0 <7 <J , we have
K () WH( x)” _

etk (1) UzVs(x)

IA

e (e (x) =¥, ) e - )]

e"SK’(x)‘— V(x)”Jr le””’ -U, ”M

s

< 1

3.3 Remark. In all the results above one can replace the original Banach space
X by 2o or Yo, accordingly. 7, = Uz>oUt(Z) and o0 = U([’S)E )+Wr,s(Z) are actually
the spaces on which our semi-groups live . Considering this we can then forget about y, in all

these results and change their statements with 7, replaced by 7 .
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3.4 Remark. Here, in this note we said a semi-group? - U, to be continuous if
limU,(x) = Us(x)
[->s

for every xiny andeverys>0. . Some other authors say ¢ = U, is continuous if it is

continuous strongly at each s> 0. i.e.if

limU,(x) =

=5

{Us(x), ifs>0

X ,1f s=0
In this case defining U, = [, continuity will mean
limU,(x) = U (x), forall s> 0.
(=8

and 7, becomesall of y itself. To see this one only need to check ¥ C 7.

For, checking this let x € y Then we can write

x = limU,(x)

=0+

which means x € /%70 .

3.5 Remarks. One can study n-parameter semi-groups of operators for # > 2 and obtain similar

result.
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